↳ PROLOG
↳ PrologToPiTRSProof
With regard to the inferred argument filtering the predicates were used in the following modes:
ordered1: (b)
le2: (b,b)
Transforming PROLOG into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
ordered_1_in_g1([]_0) -> ordered_1_out_g1([]_0)
ordered_1_in_g1(._22(X, []_0)) -> ordered_1_out_g1(._22(X, []_0))
ordered_1_in_g1(._22(X, ._22(Y, Xs))) -> if_ordered_1_in_1_g4(X, Y, Xs, le_2_in_gg2(X, Y))
le_2_in_gg2(s_11(X), s_11(Y)) -> if_le_2_in_1_gg3(X, Y, le_2_in_gg2(X, Y))
le_2_in_gg2(0_0, s_11(0_0)) -> le_2_out_gg2(0_0, s_11(0_0))
le_2_in_gg2(0_0, 0_0) -> le_2_out_gg2(0_0, 0_0)
if_le_2_in_1_gg3(X, Y, le_2_out_gg2(X, Y)) -> le_2_out_gg2(s_11(X), s_11(Y))
if_ordered_1_in_1_g4(X, Y, Xs, le_2_out_gg2(X, Y)) -> if_ordered_1_in_2_g4(X, Y, Xs, ordered_1_in_g1(._22(Y, Xs)))
if_ordered_1_in_2_g4(X, Y, Xs, ordered_1_out_g1(._22(Y, Xs))) -> ordered_1_out_g1(._22(X, ._22(Y, Xs)))
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of PROLOG
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
ordered_1_in_g1([]_0) -> ordered_1_out_g1([]_0)
ordered_1_in_g1(._22(X, []_0)) -> ordered_1_out_g1(._22(X, []_0))
ordered_1_in_g1(._22(X, ._22(Y, Xs))) -> if_ordered_1_in_1_g4(X, Y, Xs, le_2_in_gg2(X, Y))
le_2_in_gg2(s_11(X), s_11(Y)) -> if_le_2_in_1_gg3(X, Y, le_2_in_gg2(X, Y))
le_2_in_gg2(0_0, s_11(0_0)) -> le_2_out_gg2(0_0, s_11(0_0))
le_2_in_gg2(0_0, 0_0) -> le_2_out_gg2(0_0, 0_0)
if_le_2_in_1_gg3(X, Y, le_2_out_gg2(X, Y)) -> le_2_out_gg2(s_11(X), s_11(Y))
if_ordered_1_in_1_g4(X, Y, Xs, le_2_out_gg2(X, Y)) -> if_ordered_1_in_2_g4(X, Y, Xs, ordered_1_in_g1(._22(Y, Xs)))
if_ordered_1_in_2_g4(X, Y, Xs, ordered_1_out_g1(._22(Y, Xs))) -> ordered_1_out_g1(._22(X, ._22(Y, Xs)))
ORDERED_1_IN_G1(._22(X, ._22(Y, Xs))) -> IF_ORDERED_1_IN_1_G4(X, Y, Xs, le_2_in_gg2(X, Y))
ORDERED_1_IN_G1(._22(X, ._22(Y, Xs))) -> LE_2_IN_GG2(X, Y)
LE_2_IN_GG2(s_11(X), s_11(Y)) -> IF_LE_2_IN_1_GG3(X, Y, le_2_in_gg2(X, Y))
LE_2_IN_GG2(s_11(X), s_11(Y)) -> LE_2_IN_GG2(X, Y)
IF_ORDERED_1_IN_1_G4(X, Y, Xs, le_2_out_gg2(X, Y)) -> IF_ORDERED_1_IN_2_G4(X, Y, Xs, ordered_1_in_g1(._22(Y, Xs)))
IF_ORDERED_1_IN_1_G4(X, Y, Xs, le_2_out_gg2(X, Y)) -> ORDERED_1_IN_G1(._22(Y, Xs))
ordered_1_in_g1([]_0) -> ordered_1_out_g1([]_0)
ordered_1_in_g1(._22(X, []_0)) -> ordered_1_out_g1(._22(X, []_0))
ordered_1_in_g1(._22(X, ._22(Y, Xs))) -> if_ordered_1_in_1_g4(X, Y, Xs, le_2_in_gg2(X, Y))
le_2_in_gg2(s_11(X), s_11(Y)) -> if_le_2_in_1_gg3(X, Y, le_2_in_gg2(X, Y))
le_2_in_gg2(0_0, s_11(0_0)) -> le_2_out_gg2(0_0, s_11(0_0))
le_2_in_gg2(0_0, 0_0) -> le_2_out_gg2(0_0, 0_0)
if_le_2_in_1_gg3(X, Y, le_2_out_gg2(X, Y)) -> le_2_out_gg2(s_11(X), s_11(Y))
if_ordered_1_in_1_g4(X, Y, Xs, le_2_out_gg2(X, Y)) -> if_ordered_1_in_2_g4(X, Y, Xs, ordered_1_in_g1(._22(Y, Xs)))
if_ordered_1_in_2_g4(X, Y, Xs, ordered_1_out_g1(._22(Y, Xs))) -> ordered_1_out_g1(._22(X, ._22(Y, Xs)))
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
ORDERED_1_IN_G1(._22(X, ._22(Y, Xs))) -> IF_ORDERED_1_IN_1_G4(X, Y, Xs, le_2_in_gg2(X, Y))
ORDERED_1_IN_G1(._22(X, ._22(Y, Xs))) -> LE_2_IN_GG2(X, Y)
LE_2_IN_GG2(s_11(X), s_11(Y)) -> IF_LE_2_IN_1_GG3(X, Y, le_2_in_gg2(X, Y))
LE_2_IN_GG2(s_11(X), s_11(Y)) -> LE_2_IN_GG2(X, Y)
IF_ORDERED_1_IN_1_G4(X, Y, Xs, le_2_out_gg2(X, Y)) -> IF_ORDERED_1_IN_2_G4(X, Y, Xs, ordered_1_in_g1(._22(Y, Xs)))
IF_ORDERED_1_IN_1_G4(X, Y, Xs, le_2_out_gg2(X, Y)) -> ORDERED_1_IN_G1(._22(Y, Xs))
ordered_1_in_g1([]_0) -> ordered_1_out_g1([]_0)
ordered_1_in_g1(._22(X, []_0)) -> ordered_1_out_g1(._22(X, []_0))
ordered_1_in_g1(._22(X, ._22(Y, Xs))) -> if_ordered_1_in_1_g4(X, Y, Xs, le_2_in_gg2(X, Y))
le_2_in_gg2(s_11(X), s_11(Y)) -> if_le_2_in_1_gg3(X, Y, le_2_in_gg2(X, Y))
le_2_in_gg2(0_0, s_11(0_0)) -> le_2_out_gg2(0_0, s_11(0_0))
le_2_in_gg2(0_0, 0_0) -> le_2_out_gg2(0_0, 0_0)
if_le_2_in_1_gg3(X, Y, le_2_out_gg2(X, Y)) -> le_2_out_gg2(s_11(X), s_11(Y))
if_ordered_1_in_1_g4(X, Y, Xs, le_2_out_gg2(X, Y)) -> if_ordered_1_in_2_g4(X, Y, Xs, ordered_1_in_g1(._22(Y, Xs)))
if_ordered_1_in_2_g4(X, Y, Xs, ordered_1_out_g1(._22(Y, Xs))) -> ordered_1_out_g1(._22(X, ._22(Y, Xs)))
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
LE_2_IN_GG2(s_11(X), s_11(Y)) -> LE_2_IN_GG2(X, Y)
ordered_1_in_g1([]_0) -> ordered_1_out_g1([]_0)
ordered_1_in_g1(._22(X, []_0)) -> ordered_1_out_g1(._22(X, []_0))
ordered_1_in_g1(._22(X, ._22(Y, Xs))) -> if_ordered_1_in_1_g4(X, Y, Xs, le_2_in_gg2(X, Y))
le_2_in_gg2(s_11(X), s_11(Y)) -> if_le_2_in_1_gg3(X, Y, le_2_in_gg2(X, Y))
le_2_in_gg2(0_0, s_11(0_0)) -> le_2_out_gg2(0_0, s_11(0_0))
le_2_in_gg2(0_0, 0_0) -> le_2_out_gg2(0_0, 0_0)
if_le_2_in_1_gg3(X, Y, le_2_out_gg2(X, Y)) -> le_2_out_gg2(s_11(X), s_11(Y))
if_ordered_1_in_1_g4(X, Y, Xs, le_2_out_gg2(X, Y)) -> if_ordered_1_in_2_g4(X, Y, Xs, ordered_1_in_g1(._22(Y, Xs)))
if_ordered_1_in_2_g4(X, Y, Xs, ordered_1_out_g1(._22(Y, Xs))) -> ordered_1_out_g1(._22(X, ._22(Y, Xs)))
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
LE_2_IN_GG2(s_11(X), s_11(Y)) -> LE_2_IN_GG2(X, Y)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
↳ PiDP
LE_2_IN_GG2(s_11(X), s_11(Y)) -> LE_2_IN_GG2(X, Y)
From the DPs we obtained the following set of size-change graphs:
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
IF_ORDERED_1_IN_1_G4(X, Y, Xs, le_2_out_gg2(X, Y)) -> ORDERED_1_IN_G1(._22(Y, Xs))
ORDERED_1_IN_G1(._22(X, ._22(Y, Xs))) -> IF_ORDERED_1_IN_1_G4(X, Y, Xs, le_2_in_gg2(X, Y))
ordered_1_in_g1([]_0) -> ordered_1_out_g1([]_0)
ordered_1_in_g1(._22(X, []_0)) -> ordered_1_out_g1(._22(X, []_0))
ordered_1_in_g1(._22(X, ._22(Y, Xs))) -> if_ordered_1_in_1_g4(X, Y, Xs, le_2_in_gg2(X, Y))
le_2_in_gg2(s_11(X), s_11(Y)) -> if_le_2_in_1_gg3(X, Y, le_2_in_gg2(X, Y))
le_2_in_gg2(0_0, s_11(0_0)) -> le_2_out_gg2(0_0, s_11(0_0))
le_2_in_gg2(0_0, 0_0) -> le_2_out_gg2(0_0, 0_0)
if_le_2_in_1_gg3(X, Y, le_2_out_gg2(X, Y)) -> le_2_out_gg2(s_11(X), s_11(Y))
if_ordered_1_in_1_g4(X, Y, Xs, le_2_out_gg2(X, Y)) -> if_ordered_1_in_2_g4(X, Y, Xs, ordered_1_in_g1(._22(Y, Xs)))
if_ordered_1_in_2_g4(X, Y, Xs, ordered_1_out_g1(._22(Y, Xs))) -> ordered_1_out_g1(._22(X, ._22(Y, Xs)))
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
IF_ORDERED_1_IN_1_G4(X, Y, Xs, le_2_out_gg2(X, Y)) -> ORDERED_1_IN_G1(._22(Y, Xs))
ORDERED_1_IN_G1(._22(X, ._22(Y, Xs))) -> IF_ORDERED_1_IN_1_G4(X, Y, Xs, le_2_in_gg2(X, Y))
le_2_in_gg2(s_11(X), s_11(Y)) -> if_le_2_in_1_gg3(X, Y, le_2_in_gg2(X, Y))
le_2_in_gg2(0_0, s_11(0_0)) -> le_2_out_gg2(0_0, s_11(0_0))
le_2_in_gg2(0_0, 0_0) -> le_2_out_gg2(0_0, 0_0)
if_le_2_in_1_gg3(X, Y, le_2_out_gg2(X, Y)) -> le_2_out_gg2(s_11(X), s_11(Y))
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ RuleRemovalProof
IF_ORDERED_1_IN_1_G3(Y, Xs, le_2_out_gg) -> ORDERED_1_IN_G1(._22(Y, Xs))
ORDERED_1_IN_G1(._22(X, ._22(Y, Xs))) -> IF_ORDERED_1_IN_1_G3(Y, Xs, le_2_in_gg2(X, Y))
le_2_in_gg2(s_11(X), s_11(Y)) -> if_le_2_in_1_gg1(le_2_in_gg2(X, Y))
le_2_in_gg2(0_0, s_11(0_0)) -> le_2_out_gg
le_2_in_gg2(0_0, 0_0) -> le_2_out_gg
if_le_2_in_1_gg1(le_2_out_gg) -> le_2_out_gg
le_2_in_gg2(x0, x1)
if_le_2_in_1_gg1(x0)
ORDERED_1_IN_G1(._22(X, ._22(Y, Xs))) -> IF_ORDERED_1_IN_1_G3(Y, Xs, le_2_in_gg2(X, Y))
le_2_in_gg2(s_11(X), s_11(Y)) -> if_le_2_in_1_gg1(le_2_in_gg2(X, Y))
le_2_in_gg2(0_0, s_11(0_0)) -> le_2_out_gg
le_2_in_gg2(0_0, 0_0) -> le_2_out_gg
if_le_2_in_1_gg1(le_2_out_gg) -> le_2_out_gg
POL(0_0) = 0
POL(._22(x1, x2)) = 1 + x1 + 2·x2
POL(ORDERED_1_IN_G1(x1)) = x1
POL(le_2_out_gg) = 0
POL(le_2_in_gg2(x1, x2)) = 1 + x1 + x2
POL(s_11(x1)) = 1 + x1
POL(if_le_2_in_1_gg1(x1)) = 1 + x1
POL(IF_ORDERED_1_IN_1_G3(x1, x2, x3)) = 1 + x1 + 2·x2 + x3
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ DependencyGraphProof
IF_ORDERED_1_IN_1_G3(Y, Xs, le_2_out_gg) -> ORDERED_1_IN_G1(._22(Y, Xs))
le_2_in_gg2(x0, x1)
if_le_2_in_1_gg1(x0)